Self-Test Mechanisms for
Automotive Multi-Processor
System-on-Chips

Andrea Floridia

Supervisor: Ernesto Sanchez
23" September 2021 — Ph.D. Final Discussion

Outline

* Problem Statement

* On-line self-test mechanisms
« Software Scheduler for Software Test Libraries
* Deterministic cache-based execution of Software Test Libraries
» Hybrid self-test mechanisms for Lockstep CPUs

* Improvements of functional fault grading methodologies
« Functional fault grading for Software Test Libraries
« JTAG-based fault emulation platform

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Outline

 Problem Statement

* On-line self-test mechanisms
« Software Scheduler for Software Test Libraries
* Deterministic cache-based execution of Software Test Libraries
» Hybrid self-test mechanisms for Lockstep CPUs

* Improvements of functional fault grading methodologies
« Functional fault grading for Software Test Libraries
« JTAG-based fault emulation platform

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Problem Statement — Automotive MPSoCs

» Automotive Electronics Control Units (ECUs) are based on multiple
processor cores (MPSoCs):

- Homogeneous: processor cores of the same type;
« Heterogeneous: processor cores differ;

* Different in-field test solutions required to comply 1S0O26262
requirements:

« Hardware-based (Logic BIST, LBIST);

« Software Test Libraries (STLs) — for the most critical component,
the processor.

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Problem Statement — BIST-based mechanisms

* In-field test mechanisms major hurdle: test application time;

« With BIST-based approaches, to reach the same coverage figures,
pattern count increases,

 Recent researches focused on BIST-based methods:
* Power during shift;

« Optimal insertion of test point for improving controllability and
observability;

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Problem Statement — Software-based mechanisms

« STL: self-test procedures targeting faults within the CPU;

* Test procedures categories:
* Run-time test procedures — low invasiveness,

* Boot-time test procedures — high invasiveness (e.g.,
system RAM);

» Consolidated strategies for single-core devices;

* For MPSo0Cs: exclusively end-of-manufacturing testing.

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Problem Statement — STL scenario

MPSoC
CPUO CPU 1 CPU 2
> SYSTEM BUS
=11 j"" J J Stack Data
28 f‘ ¢ Shared Data
pplication |
Flash RAM | CAN

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Outline

* Problem Statement

* On-line self-test mechanisms
« Software Scheduler for Software Test Libraries
* Deterministic cache-based execution of Software Test Libraries
» Hybrid self-test mechanisms for Lockstep CPUs

* Improvements of functional fault grading methodologies
« Functional fault grading for Software Test Libraries
« JTAG-based fault emulation platform

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

STL STL STL
B Sioll ol cruall oseer T

STL ‘
KEY-ON +POST CPU OS boot -

Software Scheduler for STLs — Challenges

 Parallel test to increase system availability:

Applicatio.

STLI ,
CPU g

Application -

STLI
CPU

Time

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Software Scheduler for STLs — Challenges

 Parallel test to increase system availability:
* Run-time tests — executed without problems;

» Boot-time tests create parallelization difficulties due to shared
resources (e.g., the shared portion of system RAM):

1 TP
44

7

CPU 1

Stack Data (Private)

=

Global Variables

TP
46

7

CPUO

o=

Andrea Floridia - CAD & Reliability Group

Ph.D. Final Discussion

Software Scheduler for STLs — Challenges

 Parallel test to increase system availability:
* Run-time tests — executed without problems;

» Boot-time tests create parallelization difficulties due to shared
resources (e.g., the shared portion of system RAM):

* Multiple “Test Reserved Area” not feasible in real applications;
» Additionally, replication sometimes not physically possible;

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Software Scheduler for STLs — Main features

* Main characteristics of a multi-core STL scheduler:
1. Does not alter STL fault coverage;
2. Minimize system resources usage:

stLo [Stack Data (Private)
STL 1 -l Global Variables
OS & _TgsT Iie_se_r;ea /z\r_ea_ 1

Application | e ReservedArea 0

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Software Scheduler for STLs — Main features

* Main characteristics of a multi-core STL scheduler:
1. Does not alter STL fault coverage;
2. Minimize system resources usage:

Stack Data (Private)

STLO 0

STL 1 - al Variables

osa i Resorved Area 1
Application t Reserved Area 0]

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Software Scheduler for STLs — Main features

* Main characteristics of a multi-core STL scheduler:
1. Does not alter STL fault coverage;
2. Minimize system resources usage:
* Unique copy of the STL in code memory, and;

* No replication of shared resources (e.g., unique portion
of system RAM available for testing purposes);

3. Does not rely on OS support.

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Software Scheduler for STLs — Observations

* Few test programs cannot be executed in parallel (~12%) due
to shared resources;

 Other test programs access the system bus for fetching data
from code memory;

* Multi-core system as distributed system =» decentralized
scheduler (DS):

« Set of local schedulers interacting each other.

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Decentralized Scheduler for STLs

 Local schedulers interactions through mutex:
 shared resource is busy/free;

 Each scheduler has 3 data structures:

1. TestTable: ordered list of test programs composing the
STL;

. PendingList: tracks the test programs to be executed;

. ShareResource: list(s) of test programs that cannot
be executed in parallel due to shared resources.

N

W

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Decentralized Selfish Scheduler

 Heuristics: programs within ShareResource executed
monolithically — without freeing the shared resource;

* The resource is released at the end of ShareResource only
(selfish);

* |f a test program requiring the shared resource cannot be
executed (resource busy) is skipped, and another test program
Is executed =» Reduced number of conflicts for accessing
shared resources;

« STL fault coverage unaltered: non-preemptive scheduler;

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Experimental Results — Decentralized Scheduler

« Experiments carried out on industrial heterogenous/homogeneous
MPSoCs;

* Different Decentralized Schedulers (DS1-5) compared against the
proposed one (DSS);

« DSS cumulative memory overhead: less than 100KB.

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Experimental Results — Homogeneous, single-resource

é 100
~ | 80
T

% 60
Q| 40
Q

g1 20
|_

x| 0

SERIAL DS1 DS2 DS3 DS4 DS5 DSS
B Dual-Core m Triple-Core PROoPr\?ESED

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Experimental Results — Homogeneous, single-resource

w.r.t. SERIAL
g 100 Dual-core: -33%
| ap Triple-core: -35%
¥ P
® | 40
s ., M8 NN HN BR BN 0§
=
x| 0

SERIAL DS1 DS2 DS3 DS4 DS5 DSS
B Dual-Core m Triple-Core

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Experimental Results — Homogeneous, single-resource

w.r.t. DS3
= 100 Dual-core: -4%
% 30 Triple-core: -10%
¥ P
® | 40
s ., M8 NN HN BR BN 0§
=
x| 0

SERIAL DS1 DS2 DS3 DS4 DS5 DSS
B Dual-Core m Triple-Core

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Experimental Results — DS3 vs DSS in Triple-Core

90
30

50

Ex Time @16MHz [ms]

Andrea Floridia - CAD & Reliability Group

70 -
60 -

= DS3 —=-DSS - -SERIAL

15 16 17 18 19 20 21 22

No. of Test Programs in ShareResource

Ph.D. Final Discussion

Software Scheduler for STLs — Conclusions

 Decentralized Selfish Scheduler for multi-core STL.:
* Reduced Test Application time;

 Minimum Resource usage: identical processor cores exploit
same scheduler image (1 scheduler per STL to be
executed);

« Unaltered STL fault coverage;

« Such scheduler supports:
* Heterogeneous/Homogeneous MPSoCs;
* Multiple shared resources.

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Outline

* Problem Statement

* On-line self-test mechanisms
« Software Scheduler for Software Test Libraries
 Deterministic cache-based execution of Software Test Libraries
» Hybrid self-test mechanisms for Lockstep CPUs

* Improvements of functional fault grading methodologies
« Functional fault grading for Software Test Libraries
« JTAG-based fault emulation platform

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

STLs — Additional details

* Detection mechanism: test signature;

» Boot-time — some require a proper sequence of instructions
without any interruption;

; R4 Signature reg

LOAD R5, PATTERNS (R1)
LOAD R6, PATTERNS+4 (R1)
———
ADDER |——p ADD R/, R5, RO
ACCUMULATE (R4, R7)

CHECK (R4, EXPECTED SIGNATURE)

4

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Problem Formulation — Effects & Consequences

* Higher system bus contention = Embedded Software suffers of
limited determinism:;
» Effects on the self-test procedures:

» Higher number of pipeline stalls = the exact stream of
iInstructions entering the pipeline cannot be determined in
advance anymore;

« Consequences on boot-time procedures:

« Uncertain Fault Coverage;

« Unstable Signature.

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Uncertain fault coverage — Forwarding mechanism

‘! MUX
] | Ex-
ID-EX) ADDER — -

» MUX
Clock Cycles 1 2 13 @ 4 5 | 6
ADD R7, R8, RO > ADDRT. IFID{EX MEM WB
ADD R10, R7, RS ADDR10.. | IF IDIEX [MEM: WB
CHECK_SIGNATURE L | |

Single-Core

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Uncertain fault coverage — Forwarding example

ID-EX

Ij MUX

\ 4

ADD R7, R8, RY
ADD R10, R7, RS
CHECK SIGNATURE

4

| Ex-
! ADDER (—
» MUX
Clock Cycles 1 2 i3 | 4 | 5 6

ADD R7..
ADD R10..

IFID EX MEM WB

IF IDEX MEM W8

Single-Core

Andrea Floridia - CAD & Reliability Group

Ph.D. Final Discussion

Uncertain fault coverage — Forwarding mechanism

‘! MUX

: | EX- ‘
é— ID-EX ADDER MEM é

A

\ A 4

» MUX
ClockCycles 1 2 3 { 4 | 56 7 | 8 |9
ADD R7, R8, RO) ADDR7. IFID EX MEM/WB & |
ADD R10, R7, RS ADDR10. | ISUNTRY 'F 1D EX MEM WB
CHECK_SIGNATURE - I |

Multi-Core

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Uncertain fault coverage — Forwarding mechanism

SR

ID-EX

‘! MUX

» MUX

ADD R7, R8, RO
ADD R10, R7, RS
CHECK SIGNATURE

4

ADDER

\ A 4

\4

EX-
MEM

ClockCycles 1 2 i3 | 4 | 5 (6 {7 |

8

9

v

e

:> ADD R7..

ADD R10..

IF ID EX MEM WB |

[ETLY £ ex Mem we

Multi-Core

Andrea Floridia - CAD & Reliability Group

Ph.D. Final Discussion

Unstable signature — Performance Counters

MOV #0, PCs

ADD R7, R8, RY
ADD R10, R7, R8

MOV PCs, R4

8

ClockCycles 1 2 i3 | 4 | 56 7 |

ADDR7.. IF ID EX MEM WB

CHECK SIGNATURE
_ % PC_1: PIPELINE STALLS

9

Multi-Core

Andrea Floridia - CAD & Reliability Group

Ph.D. Final Discussion

Problem Formulation — Summary

* Uncertain Fault Coverage: it varies depending on the whole
SoC activity — processor features (fault locations) not correctly
excited,;

- Unstable Signature: mismatch is due to the occurrence of a
fault or an altered instructions stream?

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Proposed method — Cache memories

* Exploit cache memories to avoid these issues;

* Isolate the self-test procedure execution from the system
activities;

« Apply minimal modifications to self-test procedures to better
exploit locality principles — deterministic usage of caches;

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Proposed method — Details

MPSoC
L - DD
CPUO S
el C—l
D$ Y
S
FLASH
1S B
CPU1 Ul fermmmmemcmoooe
ps || — |5 |+——[TESTPATAAREA

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Proposed method — Details

Loading Loop
MPSoC
w000

m<L‘
|
€]

NO
SIGNATURE
CHECK!

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Proposed method — Details

Execution Loop

%S TP =0 JMPSoc
SIGNATURE
CHECK!

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Experimental Results — Uncertain Fault Coverage

* Forwarding mechanism of a heterogeneous Triple-core MPSoC

CORE # of Faults Fggfﬂe"f FCC[:/(‘;LZ?“
A 53.208 6414 — 75.19 79.61
B 57 506 63.61 — 79.59 82.08
C 113.212 56.24 — 66.48 68.79

Andrea Floridia - CAD & Reliability Group

Ph.D. Final Discussion

Experimental Results — Uncertain Fault Coverage

* Forwarding mechanism of a heterogeneous Triple-core MPSoC

CORE # of Faults Fggfﬂe"f FCC[:/(‘;LZ?“
A 53.208 6414 — 75.19 79.61
B 57 506 53.61 — 79.50 82.08
C 11 56.24 — 66.48 68.79

Andrea Floridia - CAD & Reliability Group

Max Difference
Observed: 16%

Ph.D. Final Discussion

Comparison with ScratchPad memories

3.5

x103

2.5

Bytes

1.5

0.5

ScratchPad Cache-Based

Total Execution Time —Memory Overhead

Andrea Floridia - CAD & Reliability Group

Ph.D. Final Discussion

20

15

10

x103

Clock Cycles

Comparison with ScratchPad memories

3.5 0

x10%) @180MHz Delta = 8.25 us! [
25 \ — 1

2 —_— — 10
1.5 \

1 l —— 5
0.5 \\

0 0

ScratchPad Cache-Based

Bytes

Clock Cycles

Total Execution Time —Memory Overhead

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Cache-based execution — Conclusions

* Advantages:

« Reusability of already existing programs (debugged and
validated);

* Negligible memory penalty;
 No modification of the existing hardware;

 Drawback:
* Increased test duration w.r.t ScratchPad memories;

» Future directions: delay faults.

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Outline

* Problem Statement

* On-line self-test mechanisms
« Software Scheduler for Software Test Libraries
* Deterministic cache-based execution of Software Test Libraries
« Hybrid self-test mechanisms for Lockstep CPUs

* Improvements of functional fault grading methodologies
« Functional fault grading for Software Test Libraries
« JTAG-based fault emulation platform

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Dual-Core Lockstep (DCLS) system

SYSTEM BUS

MPSoC

CMPs

Alarm
—

Andrea Floridia - CAD & Reliability Group

Ph.D. Final Discussion

DCLS system — Point of Failure

MPSoC

SYSTEM BUS

CMPs Alarm

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

DCLS system comparators in-field test

* Permanent faults in comparators might lead to failures being

masked during run-time;

 Hardware solutions:
* Time effective;
* Area overhead;
« Complete stimuli;

« Software solutions (STL):
 No area overhead,;

 Limited coverage on comparators.

Andrea Floridia - CAD & Reliability Group

Ph.D. Final Discussion

pattern | Input A | Input B
1 0111 1111
2 1011 1111
3 1101 1111
4 1110 1111
5 1111 0111
§ 1111 1011
7 1111 1101
8 1111 1110
9 1111 1111
10 0000 0000

Proposed approach — Hybrid Self-test

« Software used for generating test patterns;
» Hardware (Lockstep Self-test Management Unit, LSMU)
oversees:

 Altering Main core instruction stream (Instruction
Substitution Module, ISM)

» Direct stimuli application to control signals comparators
(Control Signal Substitution Module, CSSM)

« Hardware trigged when specific instruction is entering the
processor (Control Unit, CU).

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

LSMU Architecture

SYSTEM BUS

ISM

MPSoC

Main

CMPs

Alarm
—

CuU !

» CSSM

Andrea Floridia - CAD & Reliability Group

Ph.D. Final Discussion

Hybrid solution — Data bus self-test

; Program ISM to replace sw 0(r3), r6
; with sw 0(xr3), r7

; CHECKER CORE

LOAD R7, OxFFFF
LOAD R6, OxFFFE
SW 0(R3), R6

LOOPx32:
CALL WALKING BIT R6
SW O0(R3), RO

LOAD R/, OxXFFFF
LOAD R6, OxXFFFE
SW 0 (R3), RO

LOOPx32:
CALL WALKING BIT R7
SW 0(R3), RG6

LOAD R/, OxFFFF
LOAD R6, OxFFFE
SW 0 (R3), R7

LOOPx32:
CALL WALKING BIT R6
SW O0(R3), R7

LOAD R/, OxFFFF
LOAD R6, OXFFFE
SW 0 (R3), R7

LOOPx32:
CALL WALKING BIT R7
SW 0(R3), R7

Andrea Floridia - CAD & Reliability Group

Ph.D. Final Discussion

Experimental Results — DCLS OR1200

Self-test Area w.r.t. Duration Flash.
mechanism Lockstep [%] Coverage [%] [clock cycles] Occupation
P L7 y [Bytes]
Hardware 4.47 99.7 500 0
STL 0 72.0 43,976 18,828
Hybrid 2.10 99.5 5,970 4,300

Andrea Floridia - CAD & Reliability Group

Ph.D. Final Discussion

Hybrid self-test — Conclusions

* Hybrid solution halves the area overhead w.r.t a pure hardware-
based solution;

* Test patterns are not anymore fixed, and can be updated during
device lifetime;

* Future directions: reduce test application time.

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Outline

* Problem Statement

* On-line self-test mechanisms
« Software Scheduler for Software Test Libraries
* Deterministic cache-based execution of Software Test Libraries
» Hybrid self-test mechanisms for Lockstep CPUs

* Improvements of functional fault grading methodologies
* Functional fault grading for Software Test Libraries
« JTAG-based fault emulation platform

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Problem Formulation — Fault grading of STLs

 Fault Grading of self-test mechanism represents a major
bottleneck when the complexity of the system increases;

e Critical for STLs development — lot of fault simulations;

* From classical sequential circuit fault simulation (fast) to
Functional fault simulation (slow).

.Seq:enc: of Siq u:ncetof CODE
input vectors output vectors
p p { MEM

CPU CPU

U

DATA
MEM

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Functional fault simulation concepts — Observability

 To grade a self-test procedure, observability selection plays a
key role: —

' Which signals to observe;

 When to observe such signals.

—

| 1 | |
ST T N GO S S E N]
o s L o |
wRwEEN o oy Ay

| |

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Functional fault simulation concepts — Fault Dropping

 Fault dropping: reduce computational effort.

1 Golden Machine

N Faulty Machine

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Functional fault simulation concepts — Fault Dropping

 Fault dropping: reduce computational effort.

1 Golden Machine

N Faulty Machine

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Functional fault simulation concepts — Fault Dropping

 Fault dropping: reduce computational effort.

1 Golden Machine

N - 1 Faulty Machine

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Basic Functional fault simulation

* Observability selection: check memory content (e.g., test
signature) at the end of self-test program execution;

 Fault dropping not exploited at all =*Huge run time!

« Set of techniques to be used during the entire STL
development flow;

« Based on optimal placement of observation windows to enable
fault dropping (trading off execution time for accuracy).

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Self-Test Program Fault Simulations (STP-FSIMs)

» Basic techniques:

STP-FSIMO

CPU

STP-FSIM1

CPU

STP-FSIM2

v

)

CPU

| FLASH

» Optimized techniques:

stp-rsiva

CPU

{

| E—

N

>

FLASH

RAM

STP-FSIM4

CPU

FLASH
—_INSIR |
Y DAlA 2
RAM
[ADDR 3

ADDR

Andrea Floridia - CAD & Reliability Group

Ph.D. Final Discussion

Self-Test Program Fault Simulations (STP-FSIMs)

» Basic techniques:

STP-FSIMO STP-FSIM1

CPU

CPU

STP-FSIM2

)

CPU

| FLASH

» Optimized techniques:

STP-FSIM3

FLASH

CPU

.rsivi

d RAM

CPU

FLASH

.

Andrea Floridia - CAD & Reliability Group

Ph.D. Final Discussion

Observed when

accessing DATA

MEM ONLY

Experimental Results — STP-FSIMs on OR1200

* Functional Fault simulation time greatly reduced: 56-68%;

 For optimized techniques, limited loss of accuracy in the final
fault coverage;

82 \ STP-FSIMO STP-FSIM3 l

_ -
N 80 STP-FSIM4 STP-FSIM2
Q 78

76

STP-FSIM1

0 5 10 15 20 25 30 35 40
FSIM Time [Hours]

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Fault grading of STLs for DCLS

« STL for lockstep: check occurrence of faults in exclusively one
of the two domains (i.e., either Main or Checker);

 Faults detected by downstream comparators — signature
not required;

« STP-FSIMO (basic sequential fault simulation) models this
behavior — can be used without any loss of coverage.

ADDR

CPU

ADDR

il

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Fault grading of STLs — Conclusions

« STP-FSIMs to be used in different phases of STL development:
* Quickest methods for early phases;
» Longest for final grading;

* |n case of DCSL, the quickest (STP-FSIMO) can be always
used.

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Outline

* Problem Statement

* On-line self-test mechanisms
« Software Scheduler for Software Test Libraries
* Deterministic cache-based execution of Software Test Libraries
» Hybrid self-test mechanisms for Lockstep CPUs

* Improvements of functional fault grading methodologies
« Functional fault grading for Software Test Libraries
 JTAG-based fault emulation platform

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Fault Emulation — Problem Formulation

* To address limitations of fault simulation, emulation can be
exploited;

» Applicable not only to STLs;
« Research community focused on how to inject faults;

 Focus:

* how to (efficiently) observe to cope with slow external
interfaces;

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Proposed fault emulation platform

« JTAG wire-wise compatible — virtually O pins added to the
design;

* Allows for periodic fault dropping in hardware:

« Stop emulation as soon as mismatch is detected on the outputs —
reduced fault emulation time;

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

The platfrom

> run —fault
Fault Emulation Running...

Fault #1 --- Detected
Fault #2 --- Detected

Fault #3 --- Not Detected

Andrea Floridia - CAD & Reliability Group

Jojejnwig

CLOCK & RESET
GENERATOR

2

|

OBSERVATION
© > DOMAIN
ASIC DOMAIN f
FAULT
¢ S INJECTION
INJECT MANAGER
TDI TDO

TDI

TDO

R
5
i_

I
J

Ph.D. Final Discussion

Observation Domain

. Compared Signals Observed Signals
STOP

) | MISR
T = » —
A X L
G :

¥ ¥ v
R
E
G REPETITIVE LOAD

TIMER >
L
8]
w
FIFO
Pa
TDO
JTAG REG HIGH B

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Implementation details

» Gate-level 8051 MCU (65nm CMOS technology) — instrumented
for stuck-at faults (50k) injections;

« Workload: Fibonacci series (~2k clock cycles)
« Emulation time: 88 seconds with fault dropping (90 without);

 FPGA Zynq 7000 Xilinx utilization:
« LUT: ~533% (~12% without instrumentation);
* Flip-flops: ~4.5% (~1.2% without instrumentation);

 Observation domain:
o LUT ~2%, FFs ~1% (with 32x34 FIFO).

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

FPGA-based emulation — Conclusions

 MISR and on-chip FIFO ideal for coping with slow external
interfaces;

 Effectiveness limited mainly due to the short benchmark
considered,;

 Future directions:
* Further benchmarking;

« Automatize fault detection directly in hardware with dedicated FSM
(programmable via JTAG).

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Thesis Conclusions

» STLs parallel execution in MPSoCs:
« Multiple shared resources;
« Both heterogeneous/homogeneous MPSoCs;

« Uncertain fault coverage and unstable signature never reported
elsewhere;

* Hybrid approaches to the on-line self-test. merge the best of
two worlds;

 Fault grading of self-test mechanisms — overcome limitations of
simulation-based approaches via hardware emulation.

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Thank you for your attention!

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Backups

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Decentralized Selfish Scheduler — DSS

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Decentralized Selfish Scheduler — DSS

DSS CORE 1 DSS CORE 0O

TestTable = {TP2, TP3, TP1, TP4, TP5} TestTable = {TP2, TP3, TP1, TP4, TP5}
PendingList = {TP2, TP3, TP1, TP4, TP5} PendingList = {TP2, TP3, TP1, TP4, TP5}
ShareResource = {TP2, TP3} ShareResource = {TP2, TP3}

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Decentralized Selfish Scheduler — DSS

DSS CORE 1 DSS CORE 0O
|>>TestTabIe ={TP2, TP3, TP1, TP4, TP5} TestTable = {TP2, TP3, TP1, TP4, TP5}<|
PendingList = {TP2, TP3, TP1, TP4, TP5} PendingList = {TP2, TP3, TP1, TP4, TP5}
|>fShareResource ={TP2, TP3} ShareResource = {TP2, TP3}<|

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Decentralized Selfish Scheduler — DSS

CORE O
° >
CORE 1 TP2
LOCK
RESOURCE
DSS CORE 1 DSS CORE 0O
TestTable = {TP2, TP3, TP1, TP4, TP5} TestTable = {TP2, TP3, TP1, TP4, TP5}
|>>PendingList ={TP3, TP1, TP4, TP5} PendingList = {TP2, TP3, TP1, TP4, TP5}
ShareResource = {TP2, TP3} ShareResource = {TP2, TP3}

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Decentralized Selfish Scheduler — DSS

CORE 0 TP1

CORE 1 TP2

|

LOCK
RESOURCE

DSS CORE 1

DSS CORE 0

TestTable = {TP2, TP3, TP1, TP4, TP5}
PendingList = {TP2, TP3, TP1, TP4, TP5}
ShareResource = {TP2, TP3}

TestTable = {TP2, TP3, TP1, TP4, TP5}
PendingList = {TP2, TP3, TP4, TP5}<]
ShareResource = {TP2, TP3}

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Decentralized Selfish Scheduler — DSS

CORE O TP1 TP4

CORE 1 TP2 TP3

RESOURCE RESOURCE

DSS CORE 1

DSS CORE 0

TestTable = {TP2, TP3, TP1, TP4, TP5}
|>>PendingList = {TP1, TP4, TP5}
ShareResource = {TP2, TP3}

TestTable = {TP2, TP3, TP1, TP4, TP5}
PendingList = {TP2, TP3, TP5} <|
ShareResource = {TP2, TP3}

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Decentralized Selfish Scheduler — DSS

GLOCK RESOURCE

CORE O TP1 TP4 TP5
® >
CORE 1 TP2 TP3 TP1 || TP4
LOCK FREE \
RESOURCE RESOURCE
DSS CORE 1 DSS CORE 0O
TestTable = {TP2, TP3, TP1, TP4, TP5} TestTable = {TP2, TP3, TP1, TP4, TP5}
l>>PendingList = {TP5} PendingList = {TP2, TP3}
ShareResource = {TP2, TP3} ShareResource = {TP2, TP3}

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Decentralized Selfish Scheduler — DSS

GLOCK RESOURCE | | FREE RESOURCE (]
@ Q

CORE 0 TP1 |[TP4|[TP5 TP2 |[TP3
®

CORE 1 TP2 TP3 TP1 || TP4 TP5

LOCK FREE | O |
RESOURCE RESOURCE
DSS CORE 1 DSS CORE 0

TestTable = {TP2, TP3, TP1, TP4, TP5}
l>>PendinqList ={}
ShareResource = {TP2, TP3}

TestTable = {TP2, TP3, TP1, TP4, TP5}
PendinglList = {}
ShareResource = {TP2, TP3}

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Multi-resource heterogenous MPSoC

Multi-res = Single-res

30 [.
E 34
=
5321 -
-
S
= 30
o
P
=98 .
20

Dual-core Triple-Core

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Multi-resource homogeneous MPSoC

~ =
S W~

Q

(@)
-

&

Execution Time |ms|
Ct
&0

N
-

38

Andrea Floridia - CAD & Reliability Group

Multi-res

Single-res

Upppipiiiiiiiiiiiidiiiiidiiiddddddd

00000000000

Dual-core Triple-Core

Ph.D. Final Discussion

Proposed approach — Hybrid self-test

 Hardware-assisted software self-test of comparators;

« Exploit software flexibility combined with specialized hardware;

* Possibly trade-off area savings at the expenses of execution
time.

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

Software Scheduler for STLs — Challenges

» Boot-time tests create parallelization difficulties due to shared
resources (e.g., the shared portion of system RAM):

Stack Data (Private)
Global Variables

Test Reserved Area = Shared Data

Andrea Floridia - CAD & Reliability Group Ph.D. Final Discussion

