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Problem Statement – Automotive MPSoCs

• Automotive Electronics Control Units (ECUs) are based on multiple 
processor cores (MPSoCs):

• Homogeneous: processor cores of the same type;
• Heterogeneous: processor cores differ;

• Different in-field test solutions required to comply ISO26262 
requirements:

• Hardware-based (Logic BIST, LBIST);
• Software Test Libraries (STLs) – for the most critical component, 

the processor.
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Problem Statement – BIST-based mechanisms

• In-field test mechanisms major hurdle: test application time;

• With BIST-based approaches, to reach the same coverage figures, 
pattern count increases;

• Recent researches focused on BIST-based methods:

• Power during shift;

• Optimal insertion of test point for improving controllability and 
observability;
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Problem Statement – Software-based mechanisms

• STL: self-test procedures targeting faults within the CPU;

• Test procedures categories:

• Run-time test procedures – low invasiveness;

• Boot-time test procedures – high invasiveness (e.g., 
system RAM);

• Consolidated strategies for single-core devices;

• For MPSoCs: exclusively end-of-manufacturing testing.
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Problem Statement – STL scenario 
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Software Scheduler for STLs – Challenges 

• Parallel test to increase system availability:
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Software Scheduler for STLs – Challenges 

• Parallel test to increase system availability:

• Run-time tests – executed without problems;

• Boot-time tests create parallelization difficulties due to shared 
resources (e.g., the shared portion of system RAM): 
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Software Scheduler for STLs – Challenges 

• Parallel test to increase system availability:

• Run-time tests – executed without problems;

• Boot-time tests create parallelization difficulties due to shared 
resources (e.g., the shared portion of system RAM):

• Multiple “Test Reserved Area” not feasible in real applications;

• Additionally, replication sometimes not physically possible;
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Software Scheduler for STLs – Main features 

• Main characteristics of a multi-core STL scheduler:

1. Does not alter STL fault coverage;

2. Minimize system resources usage:
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Software Scheduler for STLs – Main features 

• Main characteristics of a multi-core STL scheduler:

1. Does not alter STL fault coverage;

2. Minimize system resources usage:

• Unique copy of the STL in code memory, and;

• No replication of shared resources (e.g., unique portion 
of system RAM available for testing purposes);

3. Does not rely on OS support.

Andrea Floridia - CAD & Reliability Group 14



Ph.D. Final Discussion

Software Scheduler for STLs – Observations 

• Few test programs cannot be executed in parallel (~12%) due 
to shared resources;

• Other test programs access the system bus for fetching data 
from code memory;

• Multi-core system as distributed system ➔ decentralized 
scheduler (DS):

• Set of local schedulers interacting each other.
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Decentralized Scheduler for STLs 

• Local schedulers interactions through mutex:

• shared resource is busy/free;

• Each scheduler has 3 data structures:

1. TestTable: ordered list of test programs composing the 
STL;

2. PendingList: tracks the test programs to be executed;

3. ShareResource: list(s) of test programs that cannot 
be executed in parallel due to shared resources.
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Decentralized Selfish Scheduler  

• Heuristics: programs within ShareResource executed 
monolithically – without freeing the shared resource;

• The resource is released at the end of ShareResource only 
(selfish);

• If a test program requiring the shared resource cannot be 
executed (resource busy) is skipped, and another test program 
is executed ➔ Reduced number of conflicts for accessing 
shared resources;

• STL fault coverage unaltered: non-preemptive scheduler;
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Experimental Results – Decentralized Scheduler 

• Experiments carried out on industrial heterogenous/homogeneous 
MPSoCs;

• Different Decentralized Schedulers (DS1-5) compared against the 
proposed one (DSS);

• DSS cumulative memory overhead: less than 100KB.
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Experimental Results – Homogeneous, single-resource
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Experimental Results – DS3 vs DSS in Triple-Core
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Software Scheduler for STLs – Conclusions 

• Decentralized Selfish Scheduler for multi-core STL:

• Reduced Test Application time;

• Minimum Resource usage: identical processor cores exploit 
same scheduler image (1 scheduler per STL to be 
executed);

• Unaltered STL fault coverage;

• Such scheduler supports:

• Heterogeneous/Homogeneous MPSoCs;

• Multiple shared resources.
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STLs – Additional details

• Detection mechanism: test signature;

• Boot-time – some require a proper sequence of instructions 
without any interruption;
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; R4 Signature reg

…

LOAD R5, PATTERNS(R1)
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ACCUMULATE(R4, R7)

…

CHECK(R4, EXPECTED_SIGNATURE)
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Problem Formulation – Effects & Consequences

• Higher system bus contention ➔ Embedded Software suffers of 
limited determinism;

• Effects on the self-test procedures:

• Higher number of pipeline stalls ➔ the exact stream of 
instructions entering the pipeline cannot be determined in 
advance anymore;

• Consequences on boot-time procedures:

• Uncertain Fault Coverage;

• Unstable Signature.

Andrea Floridia - CAD & Reliability Group 26



Ph.D. Final Discussion

Uncertain fault coverage – Forwarding mechanism 
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Uncertain fault coverage – Forwarding example 
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Uncertain fault coverage – Forwarding mechanism 
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Uncertain fault coverage – Forwarding mechanism 
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Unstable signature – Performance Counters  
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Problem Formulation – Summary 

• Uncertain Fault Coverage: it varies depending on the whole 
SoC activity – processor features (fault locations) not correctly 
excited;

• Unstable Signature: mismatch is due to the occurrence of a 
fault or an altered instructions stream?
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Proposed method – Cache memories

• Exploit cache memories to avoid these issues;

• Isolate the self-test procedure execution from the system 
activities;

• Apply minimal modifications to self-test procedures to better 
exploit locality principles – deterministic usage of caches; 
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Proposed method – Details 
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Proposed method – Details 
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Proposed method – Details 
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Experimental Results – Uncertain Fault Coverage 
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Experimental Results – Uncertain Fault Coverage
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Comparison with ScratchPad memories
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Comparison with ScratchPad memories
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Cache-based execution – Conclusions 

• Advantages:

• Reusability of already existing programs (debugged and 
validated);

• Negligible memory penalty;

• No modification of the existing hardware;

• Drawback:

• Increased test duration w.r.t ScratchPad memories;

• Future directions: delay faults.
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Dual-Core Lockstep (DCLS) system
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DCLS system – Point of Failure
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DCLS system comparators in-field test

• Permanent faults in comparators might lead to failures being 
masked during run-time;

• Hardware solutions:
• Time effective; 

• Area overhead;

• Complete stimuli;

• Software solutions (STL):
• No area overhead;

• Limited coverage on comparators.
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Proposed approach – Hybrid Self-test 

• Software used for generating test patterns;

• Hardware (Lockstep Self-test Management Unit, LSMU) 
oversees: 

• Altering Main core instruction stream (Instruction 
Substitution Module, ISM)

• Direct stimuli application to control signals comparators 
(Control Signal Substitution Module, CSSM)

• Hardware trigged when specific instruction is entering the 
processor (Control Unit, CU).
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LSMU Architecture
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Hybrid solution – Data bus self-test 
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; Program ISM to replace sw 0(r3), r6

; with sw 0(r3), r7

; -------------------------------------------------------------------------------------------

;                  CHECKER CORE                                   MAIN CORE

; -------------------------------------------------------------------------------------------

LOAD R7, 0xFFFF                                  LOAD R7, 0xFFFF

LOAD R6, 0xFFFE                                  LOAD R6, 0xFFFE

SW 0(R3), R6                                     SW 0(R3), R7

LOOPx32:                                         LOOPx32:

CALL _WALKING_BIT R6                             CALL _WALKING_BIT R6

SW 0(R3), R6                                     SW 0(R3), R7

LOAD R7, 0xFFFF                                  LOAD R7, 0xFFFF

LOAD R6, 0xFFFE                                  LOAD R6, 0xFFFE

SW 0(R3), R6                                     SW 0(R3), R7

LOOPx32:                                         LOOPx32:

CALL _WALKING_BIT R7                              CALL _WALKING_BIT R7

SW 0(R3), R6                                      SW 0(R3), R7

48



Ph.D. Final Discussion

Experimental Results – DCLS OR1200

Self-test 

mechanism

Area w.r.t.

Lockstep [%]
Coverage [%]

Duration 

[clock cycles]

Flash 

Occupation 

[Bytes]

Hardware 4.47 99.7 500 0

STL 0 72.0 43,976 18,828

Hybrid 2.10 99.5 5,970 4,300
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Hybrid self-test – Conclusions 

• Hybrid solution halves the area overhead w.r.t a pure hardware-
based solution;

• Test patterns are not anymore fixed, and can be updated during 
device lifetime;

• Future directions: reduce test application time.
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Problem Formulation – Fault grading of STLs

• Fault Grading of self-test mechanism represents a major 
bottleneck when the complexity of the system increases;

• Critical for STLs development – lot of fault simulations;

• From classical sequential circuit fault simulation (fast) to 
Functional fault simulation (slow).
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Functional fault simulation concepts – Observability

• To grade a self-test procedure, observability selection plays a 
key role:

• Which signals to observe;

• When to observe such signals.
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Functional fault simulation concepts – Fault Dropping 

• Fault dropping: reduce computational effort.
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• Fault dropping: reduce computational effort.
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• Fault dropping: reduce computational effort.
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Basic Functional fault simulation

• Observability selection: check memory content (e.g., test 
signature) at the end of self-test program execution;

• Fault dropping not exploited at all ➔Huge run time!

• Set of techniques to be used during the entire STL 
development flow;

• Based on optimal placement of observation windows to enable 
fault dropping (trading off execution time for accuracy).
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Self-Test Program Fault Simulations (STP-FSIMs)
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Self-Test Program Fault Simulations (STP-FSIMs)
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Experimental Results – STP-FSIMs on OR1200

• Functional Fault simulation time greatly reduced: 56-68%;

• For optimized techniques, limited loss of accuracy in the final 
fault coverage;
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Fault grading of STLs for DCLS 

• STL for lockstep: check occurrence of faults in exclusively one 
of the two domains (i.e., either Main or Checker);

• Faults detected by downstream comparators – signature 
not required;

• STP-FSIM0 (basic sequential fault simulation) models this 
behavior – can be used without any loss of coverage.
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Fault grading of STLs – Conclusions 

• STP-FSIMs to be used in different phases of STL development:
• Quickest methods for early phases;

• Longest for final grading;

• In case of DCSL, the quickest (STP-FSIM0) can be always 
used.
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Outline
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• JTAG-based fault emulation platform
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Fault Emulation – Problem Formulation

• To address limitations of fault simulation, emulation can be 
exploited;

• Applicable not only to STLs;

• Research community focused on how to inject faults;

• Focus: 

• how to (efficiently) observe to cope with slow external 
interfaces;
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Proposed fault emulation platform

• JTAG wire-wise compatible – virtually 0 pins added to the 
design;

• Allows for periodic fault dropping in hardware:
• Stop emulation as soon as mismatch is detected on the outputs –

reduced fault emulation time;
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The platfrom
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Observation Domain

Andrea Floridia - CAD & Reliability Group 67



Ph.D. Final Discussion

Implementation details 

• Gate-level 8051 MCU (65nm CMOS technology) – instrumented 
for stuck-at faults (50k) injections;

• Workload: Fibonacci series (~2k clock cycles)

• Emulation time: 88 seconds with fault dropping (90 without); 

• FPGA Zynq 7000 Xilinx utilization:
• LUT: ~53% (~12% without instrumentation);

• Flip-flops: ~4.5% (~1.2% without instrumentation);

• Observation domain: 
• LUT ~2%, FFs ~1% (with 32x34 FIFO).
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FPGA-based emulation – Conclusions 

• MISR and on-chip FIFO ideal for coping with slow external 
interfaces;

• Effectiveness limited mainly due to the short benchmark 
considered;

• Future directions:
• Further benchmarking;

• Automatize fault detection directly in hardware with dedicated FSM 
(programmable via JTAG).
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Thesis Conclusions

• STLs parallel execution in MPSoCs: 
• Multiple shared resources;

• Both heterogeneous/homogeneous MPSoCs; 

• Uncertain fault coverage and unstable signature never reported 
elsewhere;

• Hybrid approaches to the on-line self-test: merge the best of 
two worlds;

• Fault grading of self-test mechanisms – overcome limitations of 
simulation-based approaches via hardware emulation.
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Thank you for your attention!
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Backups 
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Decentralized Selfish Scheduler – DSS
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Multi-resource heterogenous MPSoC
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Multi-resource homogeneous MPSoC
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Proposed approach – Hybrid self-test 

• Hardware-assisted software self-test of comparators;

• Exploit software flexibility combined with specialized hardware;

• Possibly trade-off area savings at the expenses of execution 
time.
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Software Scheduler for STLs – Challenges 

• Boot-time tests create parallelization difficulties due to shared 
resources (e.g., the shared portion of system RAM):
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