
Self-Test Mechanisms for
Automotive Multi-Processor

System-on-Chips

Andrea Floridia

Supervisor: Ernesto Sanchez

23rd September 2021 – Ph.D. Final Discussion

Ph.D. Final Discussion

Outline

• Problem Statement

• On-line self-test mechanisms
• Software Scheduler for Software Test Libraries

• Deterministic cache-based execution of Software Test Libraries

• Hybrid self-test mechanisms for Lockstep CPUs

• Improvements of functional fault grading methodologies
• Functional fault grading for Software Test Libraries

• JTAG-based fault emulation platform

Andrea Floridia - CAD & Reliability Group 2

Ph.D. Final Discussion

Outline

• Problem Statement

• On-line self-test mechanisms
• Software Scheduler for Software Test Libraries

• Deterministic cache-based execution of Software Test Libraries

• Hybrid self-test mechanisms for Lockstep CPUs

• Improvements of functional fault grading methodologies
• Functional fault grading for Software Test Libraries

• JTAG-based fault emulation platform

Andrea Floridia - CAD & Reliability Group 3

Ph.D. Final Discussion

Problem Statement – Automotive MPSoCs

• Automotive Electronics Control Units (ECUs) are based on multiple
processor cores (MPSoCs):

• Homogeneous: processor cores of the same type;
• Heterogeneous: processor cores differ;

• Different in-field test solutions required to comply ISO26262
requirements:

• Hardware-based (Logic BIST, LBIST);
• Software Test Libraries (STLs) – for the most critical component,

the processor.

Andrea Floridia - CAD & Reliability Group 4

Ph.D. Final Discussion

Problem Statement – BIST-based mechanisms

• In-field test mechanisms major hurdle: test application time;

• With BIST-based approaches, to reach the same coverage figures,
pattern count increases;

• Recent researches focused on BIST-based methods:

• Power during shift;

• Optimal insertion of test point for improving controllability and
observability;

Andrea Floridia - CAD & Reliability Group 5

Ph.D. Final Discussion

Problem Statement – Software-based mechanisms

• STL: self-test procedures targeting faults within the CPU;

• Test procedures categories:

• Run-time test procedures – low invasiveness;

• Boot-time test procedures – high invasiveness (e.g.,
system RAM);

• Consolidated strategies for single-core devices;

• For MPSoCs: exclusively end-of-manufacturing testing.

Andrea Floridia - CAD & Reliability Group 6

Ph.D. Final Discussion

Problem Statement – STL scenario

Andrea Floridia - CAD & Reliability Group

CPU 0

SYSTEM BUS

Flash RAM CAN

OS &

Application

STL

MPSoC

Stack Data

Shared Data

CPU 1 CPU 2

7

Ph.D. Final Discussion

Outline

• Problem Statement

• On-line self-test mechanisms
• Software Scheduler for Software Test Libraries

• Deterministic cache-based execution of Software Test Libraries

• Hybrid self-test mechanisms for Lockstep CPUs

• Improvements of functional fault grading methodologies
• Functional fault grading for Software Test Libraries

• JTAG-based fault emulation platform

Andrea Floridia - CAD & Reliability Group 8

Ph.D. Final Discussion

Software Scheduler for STLs – Challenges

• Parallel test to increase system availability:

Andrea Floridia - CAD & Reliability Group

OS boot Application

OS boot

STL

CPU0

STL

CPU1

STL

CPU2

STL

CPU0

STL

CPU1

STL

CPU2

Time

Application

KEY-ON +POST

KEY-ON +POST

9

Ph.D. Final Discussion

Software Scheduler for STLs – Challenges

• Parallel test to increase system availability:

• Run-time tests – executed without problems;

• Boot-time tests create parallelization difficulties due to shared
resources (e.g., the shared portion of system RAM):

Andrea Floridia - CAD & Reliability Group

Stack Data (Private)

Global Variables

Test Reserved Area

CPU 1 CPU 0

TP

44

TP

46

10

Ph.D. Final Discussion

Software Scheduler for STLs – Challenges

• Parallel test to increase system availability:

• Run-time tests – executed without problems;

• Boot-time tests create parallelization difficulties due to shared
resources (e.g., the shared portion of system RAM):

• Multiple “Test Reserved Area” not feasible in real applications;

• Additionally, replication sometimes not physically possible;

Andrea Floridia - CAD & Reliability Group 11

Ph.D. Final Discussion

Software Scheduler for STLs – Main features

• Main characteristics of a multi-core STL scheduler:

1. Does not alter STL fault coverage;

2. Minimize system resources usage:

Andrea Floridia - CAD & Reliability Group

Flash

OS &

Application

STL 0

STL 1

Stack Data (Private)

Global Variables

Test Reserved Area 1

Test Reserved Area 0

12

Ph.D. Final Discussion

Software Scheduler for STLs – Main features

• Main characteristics of a multi-core STL scheduler:

1. Does not alter STL fault coverage;

2. Minimize system resources usage:

Andrea Floridia - CAD & Reliability Group

Flash

OS &

Application

STL 0

STL 1

Stack Data (Private)

Global Variables

Test Reserved Area 1

Test Reserved Area 0

13

Ph.D. Final Discussion

Software Scheduler for STLs – Main features

• Main characteristics of a multi-core STL scheduler:

1. Does not alter STL fault coverage;

2. Minimize system resources usage:

• Unique copy of the STL in code memory, and;

• No replication of shared resources (e.g., unique portion
of system RAM available for testing purposes);

3. Does not rely on OS support.

Andrea Floridia - CAD & Reliability Group 14

Ph.D. Final Discussion

Software Scheduler for STLs – Observations

• Few test programs cannot be executed in parallel (~12%) due
to shared resources;

• Other test programs access the system bus for fetching data
from code memory;

• Multi-core system as distributed system ➔ decentralized
scheduler (DS):

• Set of local schedulers interacting each other.

Andrea Floridia - CAD & Reliability Group 15

Ph.D. Final Discussion

Decentralized Scheduler for STLs

• Local schedulers interactions through mutex:

• shared resource is busy/free;

• Each scheduler has 3 data structures:

1. TestTable: ordered list of test programs composing the
STL;

2. PendingList: tracks the test programs to be executed;

3. ShareResource: list(s) of test programs that cannot
be executed in parallel due to shared resources.

Andrea Floridia - CAD & Reliability Group 16

Ph.D. Final Discussion

Decentralized Selfish Scheduler

• Heuristics: programs within ShareResource executed
monolithically – without freeing the shared resource;

• The resource is released at the end of ShareResource only
(selfish);

• If a test program requiring the shared resource cannot be
executed (resource busy) is skipped, and another test program
is executed ➔ Reduced number of conflicts for accessing
shared resources;

• STL fault coverage unaltered: non-preemptive scheduler;

Andrea Floridia - CAD & Reliability Group 17

Ph.D. Final Discussion

Experimental Results – Decentralized Scheduler

• Experiments carried out on industrial heterogenous/homogeneous
MPSoCs;

• Different Decentralized Schedulers (DS1-5) compared against the
proposed one (DSS);

• DSS cumulative memory overhead: less than 100KB.

Andrea Floridia - CAD & Reliability Group 18

Ph.D. Final Discussion

Experimental Results – Homogeneous, single-resource

Andrea Floridia - CAD & Reliability Group

0

20

40

60

80

100

SERIAL DS1 DS2 DS3 DS4 DS5 DSS

Ex
 T

im
e@

1
6

M
H

z
[m

s]

Dual-Core Triple-Core PROPOSED

ONE

19

Ph.D. Final DiscussionAndrea Floridia - CAD & Reliability Group

0

20

40

60

80

100

SERIAL DS1 DS2 DS3 DS4 DS5 DSS

Ex
 T

im
e@

1
6

M
H

z
[m

s]

Dual-Core Triple-Core

w.r.t. SERIAL

Dual-core: -33%

Triple-core: -35%

Experimental Results – Homogeneous, single-resource

20

Ph.D. Final DiscussionAndrea Floridia - CAD & Reliability Group

0

20

40

60

80

100

SERIAL DS1 DS2 DS3 DS4 DS5 DSS

Ex
 T

im
e@

1
6

M
H

z
[m

s]

Dual-Core Triple-Core

w.r.t. DS3

Dual-core: -4%

Triple-core: -10%

Experimental Results – Homogeneous, single-resource

21

Ph.D. Final Discussion

Experimental Results – DS3 vs DSS in Triple-Core

Andrea Floridia - CAD & Reliability Group 22

50

60

70

80

90

14 15 16 17 18 19 20 21 22 23 24 25

DS3 DSS SERIAL

No. of Test Programs in ShareResource

E
x
 T

im
e
 @

1
6
M

H
z
 [

m
s
]

Ph.D. Final Discussion

Software Scheduler for STLs – Conclusions

• Decentralized Selfish Scheduler for multi-core STL:

• Reduced Test Application time;

• Minimum Resource usage: identical processor cores exploit
same scheduler image (1 scheduler per STL to be
executed);

• Unaltered STL fault coverage;

• Such scheduler supports:

• Heterogeneous/Homogeneous MPSoCs;

• Multiple shared resources.

Andrea Floridia - CAD & Reliability Group 23

Ph.D. Final Discussion

Outline

• Problem Statement

• On-line self-test mechanisms
• Software Scheduler for Software Test Libraries

• Deterministic cache-based execution of Software Test Libraries

• Hybrid self-test mechanisms for Lockstep CPUs

• Improvements of functional fault grading methodologies
• Functional fault grading for Software Test Libraries

• JTAG-based fault emulation platform

Andrea Floridia - CAD & Reliability Group 24

Ph.D. Final Discussion

STLs – Additional details

• Detection mechanism: test signature;

• Boot-time – some require a proper sequence of instructions
without any interruption;

Andrea Floridia - CAD & Reliability Group

; R4 Signature reg

…

LOAD R5, PATTERNS(R1)

LOAD R6, PATTERNS+4(R1)

ADD R7, R5, R6

ACCUMULATE(R4, R7)

…

CHECK(R4, EXPECTED_SIGNATURE)

ADDER

25

Ph.D. Final Discussion

Problem Formulation – Effects & Consequences

• Higher system bus contention ➔ Embedded Software suffers of
limited determinism;

• Effects on the self-test procedures:

• Higher number of pipeline stalls ➔ the exact stream of
instructions entering the pipeline cannot be determined in
advance anymore;

• Consequences on boot-time procedures:

• Uncertain Fault Coverage;

• Unstable Signature.

Andrea Floridia - CAD & Reliability Group 26

Ph.D. Final Discussion

Uncertain fault coverage – Forwarding mechanism

Andrea Floridia - CAD & Reliability Group

ID-EX
EX-

MEM
ADDER

MUX

MUX

…

ADD R7, R8, R9

ADD R10, R7, R8

CHECK_SIGNATURE

Clock Cycles 1 2 3 4 5 6

ADD R7.. IF ID EX MEM WB

ADD R10.. IF ID EX MEM WB

Single-Core
27

Ph.D. Final Discussion

Uncertain fault coverage – Forwarding example

Andrea Floridia - CAD & Reliability Group

ID-EX
EX-

MEM
ADDER

MUX

MUX

Clock Cycles 1 2 3 4 5 6

ADD R7.. IF ID EX MEM WB

ADD R10.. IF ID EX MEM WB

…

ADD R7, R8, R9

ADD R10, R7, R8

CHECK_SIGNATURE

Single-Core
28

Ph.D. Final Discussion

Uncertain fault coverage – Forwarding mechanism

Andrea Floridia - CAD & Reliability Group

ID-EX
EX-

MEM
ADDER

MUX

MUX

Clock Cycles 1 2 3 4 5 6 7 8 9

ADD R7.. IF ID EX MEM WB

ADD R10.. IF ID EX MEM WBSTALLS

…

ADD R7, R8, R9

ADD R10, R7, R8

CHECK_SIGNATURE

Multi-Core
29

Ph.D. Final Discussion

Uncertain fault coverage – Forwarding mechanism

Andrea Floridia - CAD & Reliability Group

ID-EX
EX-

MEM
ADDER

MUX

MUX

ADD R7.. IF ID EX MEM WB

ADD R10.. IF ID EX MEM WB

…

ADD R7, R8, R9

ADD R10, R7, R8

CHECK_SIGNATURE

Clock Cycles 1 2 3 4 5 6 7 8 9

STALLS

Multi-Core
30

Ph.D. Final Discussion

Unstable signature – Performance Counters

Andrea Floridia - CAD & Reliability Group

MOV #0, PCs

…

ADD R7, R8, R9

ADD R10, R7, R8

…

MOV PCs, R4

CHECK_SIGNATURE
PC_1: PIPELINE STALLS N + 3

ADD R7.. IF ID EX MEM WB

STALLS

Clock Cycles 1 2 3 4 5 6 7 8 9

Multi-Core
31

Ph.D. Final Discussion

Problem Formulation – Summary

• Uncertain Fault Coverage: it varies depending on the whole
SoC activity – processor features (fault locations) not correctly
excited;

• Unstable Signature: mismatch is due to the occurrence of a
fault or an altered instructions stream?

Andrea Floridia - CAD & Reliability Group 32

Ph.D. Final Discussion

Proposed method – Cache memories

• Exploit cache memories to avoid these issues;

• Isolate the self-test procedure execution from the system
activities;

• Apply minimal modifications to self-test procedures to better
exploit locality principles – deterministic usage of caches;

Andrea Floridia - CAD & Reliability Group 33

Ph.D. Final Discussion

Proposed method – Details

Andrea Floridia - CAD & Reliability Group

MPSoC

CPU0

RAM

D $

FLASH

TEST DATA AREA

I $

CPU0
TP1

CPU0

D $

I $

CPU1

S
Y
S

B
U
S

34

Ph.D. Final Discussion

Proposed method – Details

Andrea Floridia - CAD & Reliability Group

S
Y
S

B
U
S

CPU0

RAM

D $

FLASH

I $

CPU0
TP1

Loading Loop

CPU0

D $

I $

CPU1
TEST DATA AREA

NO
SIGNATURE

CHECK!

MPSoC

35

Ph.D. Final Discussion

Proposed method – Details

Andrea Floridia - CAD & Reliability Group

S
Y
S

B
U
S

CPU0

RAM

D $

FLASH

I $

CPU0
TP1

Execution Loop

CPU0

D $

I $

CPU1

TP1

TEST DATA AREA

SIGNATURE
CHECK!

MPSoC

36

Ph.D. Final Discussion

Experimental Results – Uncertain Fault Coverage

Andrea Floridia - CAD & Reliability Group

CORE # of Faults
FC[%] No

Caches

FC [%] With

Caches

A 53,298 64.14 – 75.19 79.61

B 57,506 63.61 – 79.59 82.08

C 113,212 56.24 – 66.48 68.79

• Forwarding mechanism of a heterogeneous Triple-core MPSoC

37

Ph.D. Final Discussion

Experimental Results – Uncertain Fault Coverage

Andrea Floridia - CAD & Reliability Group

Max Difference
Observed: 16%

• Forwarding mechanism of a heterogeneous Triple-core MPSoC

CORE # of Faults
FC[%] No

Caches

FC [%] With

Caches

A 53,298 64.14 – 75.19 79.61

B 57,506 63.61 – 79.59 82.08

C 113,212 56.24 – 66.48 68.79

38

Ph.D. Final Discussion

Comparison with ScratchPad memories

Andrea Floridia - CAD & Reliability Group

0

0.5

1

1.5

2

2.5

3

3.5

ScratchPad Cache-Based

0

5

10

15

20
B

yt
es

x103

C
lo

ck
 C

yc
le

s

x103

Total Execution Time Memory Overhead

39

Ph.D. Final Discussion

Comparison with ScratchPad memories

Andrea Floridia - CAD & Reliability Group

0

0.5

1

1.5

2

2.5

3

3.5

ScratchPad Cache-Based

0

5

10

15

20
B

yt
es

x103

C
lo

ck
 C

yc
le

s

x103

Total Execution Time Memory Overhead

@180MHz Delta = 8.25 us!

40

Ph.D. Final Discussion

Cache-based execution – Conclusions

• Advantages:

• Reusability of already existing programs (debugged and
validated);

• Negligible memory penalty;

• No modification of the existing hardware;

• Drawback:

• Increased test duration w.r.t ScratchPad memories;

• Future directions: delay faults.

Andrea Floridia - CAD & Reliability Group 41

Ph.D. Final Discussion

Outline

• Problem Statement

• On-line self-test mechanisms
• Software Scheduler for Software Test Libraries

• Deterministic cache-based execution of Software Test Libraries

• Hybrid self-test mechanisms for Lockstep CPUs

• Improvements of functional fault grading methodologies
• Functional fault grading for Software Test Libraries

• JTAG-based fault emulation platform

Andrea Floridia - CAD & Reliability Group 42

Ph.D. Final Discussion

Dual-Core Lockstep (DCLS) system

Andrea Floridia - CAD & Reliability Group

SYSTEM BUS
MPSoC

Main

Checker

CMPs Alarm

43

Ph.D. Final Discussion

DCLS system – Point of Failure

Andrea Floridia - CAD & Reliability Group

SYSTEM BUS
MPSoC

Main

Checker

CMPs Alarm

44

Ph.D. Final Discussion

DCLS system comparators in-field test

• Permanent faults in comparators might lead to failures being
masked during run-time;

• Hardware solutions:
• Time effective;

• Area overhead;

• Complete stimuli;

• Software solutions (STL):
• No area overhead;

• Limited coverage on comparators.

Andrea Floridia - CAD & Reliability Group 45

Ph.D. Final Discussion

Proposed approach – Hybrid Self-test

• Software used for generating test patterns;

• Hardware (Lockstep Self-test Management Unit, LSMU)
oversees:

• Altering Main core instruction stream (Instruction
Substitution Module, ISM)

• Direct stimuli application to control signals comparators
(Control Signal Substitution Module, CSSM)

• Hardware trigged when specific instruction is entering the
processor (Control Unit, CU).

Andrea Floridia - CAD & Reliability Group 46

Ph.D. Final Discussion

LSMU Architecture

Andrea Floridia - CAD & Reliability Group

SYSTEM BUS
MPSoC

Main

Checker

CMPs AlarmISM

CU
CSSM

47

Ph.D. Final Discussion

Hybrid solution – Data bus self-test

Andrea Floridia - CAD & Reliability Group

; Program ISM to replace sw 0(r3), r6

; with sw 0(r3), r7

; ---

; CHECKER CORE MAIN CORE

; ---

LOAD R7, 0xFFFF LOAD R7, 0xFFFF

LOAD R6, 0xFFFE LOAD R6, 0xFFFE

SW 0(R3), R6 SW 0(R3), R7

LOOPx32: LOOPx32:

CALL _WALKING_BIT R6 CALL _WALKING_BIT R6

SW 0(R3), R6 SW 0(R3), R7

LOAD R7, 0xFFFF LOAD R7, 0xFFFF

LOAD R6, 0xFFFE LOAD R6, 0xFFFE

SW 0(R3), R6 SW 0(R3), R7

LOOPx32: LOOPx32:

CALL _WALKING_BIT R7 CALL _WALKING_BIT R7

SW 0(R3), R6 SW 0(R3), R7

48

Ph.D. Final Discussion

Experimental Results – DCLS OR1200

Self-test

mechanism

Area w.r.t.

Lockstep [%]
Coverage [%]

Duration

[clock cycles]

Flash

Occupation

[Bytes]

Hardware 4.47 99.7 500 0

STL 0 72.0 43,976 18,828

Hybrid 2.10 99.5 5,970 4,300

Andrea Floridia - CAD & Reliability Group 49

Ph.D. Final Discussion

Hybrid self-test – Conclusions

• Hybrid solution halves the area overhead w.r.t a pure hardware-
based solution;

• Test patterns are not anymore fixed, and can be updated during
device lifetime;

• Future directions: reduce test application time.

Andrea Floridia - CAD & Reliability Group 50

Ph.D. Final Discussion

Outline

• Problem Statement

• On-line self-test mechanisms
• Software Scheduler for Software Test Libraries

• Deterministic cache-based execution of Software Test Libraries

• Hybrid self-test mechanisms for Lockstep CPUs

• Improvements of functional fault grading methodologies
• Functional fault grading for Software Test Libraries

• JTAG-based fault emulation platform

Andrea Floridia - CAD & Reliability Group 51

Ph.D. Final Discussion

Problem Formulation – Fault grading of STLs

• Fault Grading of self-test mechanism represents a major
bottleneck when the complexity of the system increases;

• Critical for STLs development – lot of fault simulations;

• From classical sequential circuit fault simulation (fast) to
Functional fault simulation (slow).

Andrea Floridia - CAD & Reliability Group 52

Ph.D. Final Discussion

Functional fault simulation concepts – Observability

• To grade a self-test procedure, observability selection plays a
key role:

• Which signals to observe;

• When to observe such signals.

Andrea Floridia - CAD & Reliability Group

53

Observation window

Ph.D. Final Discussion

Functional fault simulation concepts – Fault Dropping

• Fault dropping: reduce computational effort.

Andrea Floridia - CAD & Reliability Group

1 Golden Machine

N Faulty Machine

54

Ph.D. Final Discussion

• Fault dropping: reduce computational effort.

Andrea Floridia - CAD & Reliability Group

1 Golden Machine

N Faulty Machine

Functional fault simulation concepts – Fault Dropping

55

Ph.D. Final Discussion

• Fault dropping: reduce computational effort.

Andrea Floridia - CAD & Reliability Group

1 Golden Machine

N - 1 Faulty Machine

Functional fault simulation concepts – Fault Dropping

56

Ph.D. Final Discussion

Basic Functional fault simulation

• Observability selection: check memory content (e.g., test
signature) at the end of self-test program execution;

• Fault dropping not exploited at all ➔Huge run time!

• Set of techniques to be used during the entire STL
development flow;

• Based on optimal placement of observation windows to enable
fault dropping (trading off execution time for accuracy).

Andrea Floridia - CAD & Reliability Group 57

Ph.D. Final Discussion

Self-Test Program Fault Simulations (STP-FSIMs)

Andrea Floridia - CAD & Reliability Group

STP-FSIM0 STP-FSIM1 STP-FSIM2

• Basic techniques:

• Optimized techniques:

STP-FSIM3 STP-FSIM4

58

Ph.D. Final Discussion

Self-Test Program Fault Simulations (STP-FSIMs)

Andrea Floridia - CAD & Reliability Group

STP-FSIM0 STP-FSIM1 STP-FSIM2

• Basic techniques:

• Optimized techniques:

STP-FSIM3 STP-FSIM4

Observed when
accessing DATA

MEM ONLY

59

Ph.D. Final Discussion

Experimental Results – STP-FSIMs on OR1200

• Functional Fault simulation time greatly reduced: 56-68%;

• For optimized techniques, limited loss of accuracy in the final
fault coverage;

Andrea Floridia - CAD & Reliability Group

STP-FSIM0

STP-FSIM1

STP-FSIM4

STP-FSIM3

STP-FSIM2

74

76

78

80

82

84

0 5 10 15 20 25 30 35 40

FC
 [

%
]

FSIM Time [Hours]

60

Ph.D. Final Discussion

Fault grading of STLs for DCLS

• STL for lockstep: check occurrence of faults in exclusively one
of the two domains (i.e., either Main or Checker);

• Faults detected by downstream comparators – signature
not required;

• STP-FSIM0 (basic sequential fault simulation) models this
behavior – can be used without any loss of coverage.

Andrea Floridia - CAD & Reliability Group 61

Ph.D. Final Discussion

Fault grading of STLs – Conclusions

• STP-FSIMs to be used in different phases of STL development:
• Quickest methods for early phases;

• Longest for final grading;

• In case of DCSL, the quickest (STP-FSIM0) can be always
used.

Andrea Floridia - CAD & Reliability Group 62

Ph.D. Final Discussion

Outline

• Problem Statement

• On-line self-test mechanisms
• Software Scheduler for Software Test Libraries

• Deterministic cache-based execution of Software Test Libraries

• Hybrid self-test mechanisms for Lockstep CPUs

• Improvements of functional fault grading methodologies
• Functional fault grading for Software Test Libraries

• JTAG-based fault emulation platform

Andrea Floridia - CAD & Reliability Group 63

Ph.D. Final Discussion

Fault Emulation – Problem Formulation

• To address limitations of fault simulation, emulation can be
exploited;

• Applicable not only to STLs;

• Research community focused on how to inject faults;

• Focus:

• how to (efficiently) observe to cope with slow external
interfaces;

Andrea Floridia - CAD & Reliability Group 64

Ph.D. Final Discussion

Proposed fault emulation platform

• JTAG wire-wise compatible – virtually 0 pins added to the
design;

• Allows for periodic fault dropping in hardware:
• Stop emulation as soon as mismatch is detected on the outputs –

reduced fault emulation time;

Andrea Floridia - CAD & Reliability Group 65

Ph.D. Final Discussion

The platfrom

Andrea Floridia - CAD & Reliability Group

> run –fault
Fault Emulation Running…
Fault #1 --- Detected
Fault #2 --- Detected
Fault #3 --- Not Detected
……

E
m

u
la

to
r

66

Ph.D. Final Discussion

Observation Domain

Andrea Floridia - CAD & Reliability Group 67

Ph.D. Final Discussion

Implementation details

• Gate-level 8051 MCU (65nm CMOS technology) – instrumented
for stuck-at faults (50k) injections;

• Workload: Fibonacci series (~2k clock cycles)

• Emulation time: 88 seconds with fault dropping (90 without);

• FPGA Zynq 7000 Xilinx utilization:
• LUT: ~53% (~12% without instrumentation);

• Flip-flops: ~4.5% (~1.2% without instrumentation);

• Observation domain:
• LUT ~2%, FFs ~1% (with 32x34 FIFO).

Andrea Floridia - CAD & Reliability Group 68

Ph.D. Final Discussion

FPGA-based emulation – Conclusions

• MISR and on-chip FIFO ideal for coping with slow external
interfaces;

• Effectiveness limited mainly due to the short benchmark
considered;

• Future directions:
• Further benchmarking;

• Automatize fault detection directly in hardware with dedicated FSM
(programmable via JTAG).

Andrea Floridia - CAD & Reliability Group 69

Ph.D. Final Discussion

Thesis Conclusions

• STLs parallel execution in MPSoCs:
• Multiple shared resources;

• Both heterogeneous/homogeneous MPSoCs;

• Uncertain fault coverage and unstable signature never reported
elsewhere;

• Hybrid approaches to the on-line self-test: merge the best of
two worlds;

• Fault grading of self-test mechanisms – overcome limitations of
simulation-based approaches via hardware emulation.

Andrea Floridia - CAD & Reliability Group 70

Ph.D. Final Discussion

Thank you for your attention!

Andrea Floridia - CAD & Reliability Group 71

Ph.D. Final DiscussionAndrea Floridia - CAD & Reliability Group 72

Ph.D. Final Discussion

Backups

Andrea Floridia - CAD & Reliability Group 73

Ph.D. Final Discussion

Decentralized Selfish Scheduler – DSS

Andrea Floridia - CAD & Reliability Group 16

Ph.D. Final Discussion

Decentralized Selfish Scheduler – DSS

Andrea Floridia - CAD & Reliability Group 16

TestTable = {TP2, TP3, TP1, TP4, TP5}

PendingList = {TP2, TP3, TP1 , TP4, TP5}

ShareResource = {TP2, TP3}

DSS CORE 1 DSS CORE 0

TestTable = {TP2, TP3, TP1, TP4, TP5}

PendingList = {TP2, TP3, TP1 , TP4, TP5}

ShareResource = {TP2, TP3}

Ph.D. Final Discussion

Decentralized Selfish Scheduler – DSS

Andrea Floridia - CAD & Reliability Group 16

TestTable = {TP2, TP3, TP1, TP4, TP5}

PendingList = {TP2, TP3, TP1 , TP4, TP5}

ShareResource = {TP2, TP3}

DSS CORE 1 DSS CORE 0

TestTable = {TP2, TP3, TP1, TP4, TP5}

PendingList = {TP2, TP3, TP1 , TP4, TP5}

ShareResource = {TP2, TP3}

Ph.D. Final Discussion

Decentralized Selfish Scheduler – DSS

Andrea Floridia - CAD & Reliability Group 16

CORE 0

CORE 1

TestTable = {TP2, TP3, TP1, TP4, TP5}

PendingList = {TP3, TP1 , TP4, TP5}

ShareResource = {TP2, TP3}

DSS CORE 1 DSS CORE 0

TestTable = {TP2, TP3, TP1, TP4, TP5}

PendingList = {TP2, TP3, TP1 , TP4, TP5}

ShareResource = {TP2, TP3}

TP2

LOCK

RESOURCE

Ph.D. Final Discussion

Decentralized Selfish Scheduler – DSS

Andrea Floridia - CAD & Reliability Group 16

CORE 0

CORE 1

TestTable = {TP2, TP3, TP1, TP4, TP5}

PendingList = {TP2, TP3, TP1 , TP4, TP5}

ShareResource = {TP2, TP3}

DSS CORE 1 DSS CORE 0

TestTable = {TP2, TP3, TP1, TP4, TP5}

PendingList = {TP2, TP3, TP4, TP5}

ShareResource = {TP2, TP3}

TP2

LOCK

RESOURCE

TP1

Ph.D. Final Discussion

Decentralized Selfish Scheduler – DSS

Andrea Floridia - CAD & Reliability Group 16

CORE 0

CORE 1

TestTable = {TP2, TP3, TP1, TP4, TP5}

PendingList = {TP1, TP4, TP5}

ShareResource = {TP2, TP3}

DSS CORE 1 DSS CORE 0

TestTable = {TP2, TP3, TP1, TP4, TP5}

PendingList = {TP2, TP3, TP5}

ShareResource = {TP2, TP3}

TP2

LOCK

RESOURCE

TP3

TP1

FREE

RESOURCE

TP4

Ph.D. Final Discussion

Decentralized Selfish Scheduler – DSS

Andrea Floridia - CAD & Reliability Group 16

CORE 0

CORE 1

TestTable = {TP2, TP3, TP1, TP4, TP5}

PendingList = {TP5}

ShareResource = {TP2, TP3}

DSS CORE 1 DSS CORE 0

TestTable = {TP2, TP3, TP1, TP4, TP5}

PendingList = {TP2, TP3}

ShareResource = {TP2, TP3}

TP2

LOCK

RESOURCE

TP3

TP1

FREE

RESOURCE

TP1 TP4

TP4 TP5

LOCK RESOURCE

Ph.D. Final Discussion

Decentralized Selfish Scheduler – DSS

Andrea Floridia - CAD & Reliability Group 16

CORE 0

CORE 1

TestTable = {TP2, TP3, TP1, TP4, TP5}

PendingList = {}

ShareResource = {TP2, TP3}

DSS CORE 1 DSS CORE 0

TestTable = {TP2, TP3, TP1, TP4, TP5}

PendingList = {}

ShareResource = {TP2, TP3}

TP2

LOCK

RESOURCE

TP3

TP1

FREE

RESOURCE

TP1 TP4 TP5

TP4 TP5 TP2 TP3

LOCK RESOURCE FREE RESOURCE

Ph.D. Final Discussion

Multi-resource heterogenous MPSoC

Andrea Floridia - CAD & Reliability Group 82

Ph.D. Final Discussion

Multi-resource homogeneous MPSoC

Andrea Floridia - CAD & Reliability Group 83

Ph.D. Final Discussion

Proposed approach – Hybrid self-test

• Hardware-assisted software self-test of comparators;

• Exploit software flexibility combined with specialized hardware;

• Possibly trade-off area savings at the expenses of execution
time.

Andrea Floridia - CAD & Reliability Group 84

Ph.D. Final Discussion

Software Scheduler for STLs – Challenges

• Boot-time tests create parallelization difficulties due to shared
resources (e.g., the shared portion of system RAM):

Andrea Floridia - CAD & Reliability Group

Stack Data (Private)

Global Variables

Test Reserved Area Shared Data

85

